Conformal Field Theory I

1 Anomalous dimensions

In the free-scalar CFT with action

$$S = \frac{1}{2\pi\alpha'} \int \partial\phi \overline{\partial}\phi d^2z,$$

the operator $V \equiv \exp(ik\phi)$: has weights $(h, \tilde{h}) = (\alpha'k^2/4, \alpha'k^2/4)$ and dimension $\Delta \equiv h + \tilde{h} = \alpha'k^2/2$. This is an anomalous dimension which in this exercise we will understand by regularizing.

Set $z = \sigma + i\tau$ and take the range

$$-\infty < \tau < \infty, \qquad 0 \le \sigma \le \ell.$$

replace the segment $[0,\ell]$ by M lattice sites with $\ell=Ma$ and regularize the Lagrangian as

$$L = \frac{1}{4\pi\alpha'} \int_0^\ell d\sigma \left(\partial_\tau \phi \partial_\tau \phi - \partial_\sigma \phi \partial_\sigma \phi\right) \longrightarrow \frac{1}{4\pi\alpha'} \left[a \sum_{r=1}^M \dot{\phi}_r^2 - \frac{1}{a} \sum_{r=1}^{M-1} (\phi_r - \phi_{r+1})^2 \right].$$

This problem is usually solved in solid state physics. The eigen-frequencies are

$$\omega_j = \frac{2}{a} \sin \frac{j\pi}{2M}, \qquad j = 0, \dots, M - 1.$$

Compare the operator $\exp(ik\phi_r)$ to the normal ordered operator : $\exp(ik\phi_r)$: [you may normal-order by moving all creation operators to the left and annihilation operators to the right], and show that $a^{-\alpha'k^2/2}\exp(ik\phi_r)$ is finite in the limit $a\to 0$. Deduce the anomalous dimension $\Delta=\alpha'k^2/2$. You will have to use

$$\frac{Ma}{\pi} \sum_{j} \frac{1}{\omega_{j}} = \log M + O(1).$$

2 Conformal symmetry in D > 2

The conformal symmetry group in D > 2 is SO(D+1,1). These are transformations of the form

$$x^i \to u^i + \theta \frac{\Lambda^i{}_j(v^j + x^j)}{\|\vec{v} + \vec{x}\|^2},$$

where Λ is an SO(D) matrix, θ is a nonzero scalar, and \vec{u} and \vec{v} are vectors. We will now study this group of transformations.

• By checking how the metric transforms show that these are conformal transformations.

• The identity transformation is obtained by taking $\Lambda^i{}_j = \delta^i{}_j$, $\theta = ||\vec{v}||^2 \to \infty$ and $\vec{u} = -\vec{v}$. Show that an infinitesimal conformal transformation takes the form

$$\delta x^{i} = \epsilon (a^{i} + b^{i}{}_{j}x^{j} + fx^{i} + c_{j}x^{j}x^{i} - \frac{1}{2}\vec{x}^{2}c^{i}),$$

where $b_{ij} = -b_{ji}$ is an antisymmetric matrix, \vec{a} , \vec{c} are vectors, and f is a scalar.

- Let $P^i, J^i{}_j, S, K_j$ be the operators that generate infinitesimal transformations corresponding to $a^i, b^i{}_j, f, c_j$, respectively. Find their commutation relations.
- Show that the above are all the solutions to the conformal Killing equation

$$\partial_i \delta x_j + \partial_j \delta x_i = \frac{2}{D} \delta_{ij} \partial_k \delta x_k.$$

3 Schwarzian derivative

In this exercise we will derive the expression for the Schwarzian derivative $\{f, z\}$ from its **infinitesimal** form:

$$\{f(z), z\} = \epsilon v'''(z) + O(\epsilon)^2, \qquad f(z) = z + \epsilon v(z).$$

• Behavior under composition: From the transformation properties of the energy momentum tensor T(z), show that the Schwarzian derivative has to satisfy

$$\{f(g(z)), z\} = \{g(z), z\} + g'(z)^2 \{f(g(z)), g(z)\}.$$

• Assuming that $\{f, z\}$ is an algebraic expression in f and its derivatives, and assuming the infinitesimal form of the Schwarzian derivative and its behavior under composition, show that the Schwarzian derivative has to take the form

$$\{f,z\} = A(f',f'')f''' + B(f',f''),$$

where A and B are algebraic expressions.

• From the infinitesimal form of the Schwarzian derivative and its behavior under composition, show that the Schwarzian derivative of a Möbius $(PSL(2, \mathbf{C}))$ transformation

$$f(z) = \frac{az+b}{cz+d}, \qquad ad-bc = 1,$$

is zero.

- Using the above fact about Möbius transformations, find B(f', f'').
- Using the above fact about Möbius transformations and the behavior of the Schwarzian derivative under composition, show that

$$\left\{ \frac{ag(z)+b}{cg(z)+d}, z \right\} = \left\{ g(z), z \right\},$$

and use this to determine A(f', f'').

Is there a generalization of the Schwarzian derivative that satisfies

$$\{f(g(z)), z\} = \{g(z), z\} + g'(z)^n \{f(g(z)), g(z)\}, \qquad \{z + \epsilon u(z), z\} = \epsilon u^{(n+1)}(z) + O(\epsilon^2)?$$